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OPTIMAL DESIGN OF EXPERIMENTS
. L

Herman Chernoff —

Stanford University -

1. INTRODUCTION, I would like to discuss some aspects of the
theory of optimal design of experiments with particular emphasis on its
relevance to the practice of statistics. There are two major branches
of classical statistics, Estimation and Testing of Hypotheses, for which
the theory of optimal design yields different results. Because of the
time limitation, I shall confine my attentionto certain results and ex-
amples in the theory of estimation,

2. SOME EXAMPLES, To illustrate the theory let us consider
three examples. The first example is a well known one with a trivial
solution. That is the one of estimating the slope of a regression (straight
line). More specifically we have

Example 1.

The experimenter may choose any number y between -1 and +1.
This number y designates an elementary experiment which corresponds
to observing :

z= o+ By + u

where u is normally dlstnbuted with mean 0 and variance 1 and o
and A are unknown para.rneters. The experimenter is permitted to
select a design consisting of n ya_lues Yy Y20 ¢ o o0 Vo with pos-

sible repetitions. The design corresponds to performing the n designated
experiments independently. It is desired to select a design which will
yleld the best pOSBlble estimate of the slope B.

It is well known and it'is 1ntu1t1vely obv1ous that the best design con-
sists of selecting y= -1 and y =+1 each half the time (prov1d1ng n is

even).

l/ This work was supported in part by Office of Naval Research Contract
Nonr-225(52) at Stanford University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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Another example which is of some current interest, having been dis- .
cussed in yesterday's paper by Mr. Langlie |5| on a problem in reliability,

and which is also relevant to the problem of Probit Analysis, may be ex-
pressed as follows:

Example 2.

A device, which may be used only once, can operate successfully
under a stress 8 with probability

o0 -tz/Z R
= —'1— dv
4 fs-/i Vzﬂe ‘

o

In other words one may say that the strength of the device, as measured
by the maximum stress under which it will operate successfully, is
normally distributed with unknown mean [L and variance O, Itis
desired to select a design consisting of the choice of stress levels

Bys 81+ -+ +» By which will yield an optimal estimate of A - ko". The

elementary experiment, designated s, consists of course of observing .
the success or failure of the device when used under stress s.

Finally a third problem which was discussed in detail in a recent
paper of mine |2 | deals with accelerated life testing, Here we wish to
estimate the medn life time of a device when used under an environment
of ordinary stress conditions. If, this mean lifetime is great and it is
desired to have the estimate soon, then it is necessary to accelerate.

The device is subjected to a much larger than ordinary stress. The
results of such accelerated life testing can be relevant only if one assumes
some form of relationship connecting the mean lifetime under various
stresses. As an approximation we shall assume a quadratic relationship
for some limited range. In addition since time is of the essence we

shall assume that the cost of observing a device under stress s is pro-
portional to the mean lifetime under that stress. Let us be more specific.
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Example 3.

A device under stress environment s has lifetime T with an ex-
ponential distribution with failure rate (reciprocal of mean) given by

P = 918+ 9282“ for 0 < 8 £ s*

1
the failure rate under the ordinary stress 8,» Thisis

where &, and 6’2 are unknown parameters. It is desired to estimate

Po = ‘9180 + '6250’ .

An elementary experiment designated by s consists of observing the
lifetime T of a device subjected to the environment -s, . The cost of the
experiment s is

o »
Cls) =c( Oy + G,8%) .

It is desired to select a design consiéting of experiments B1) Bysr o o o}

Osvsié_ s*, so as to obtain an optimal estimate of (Po for a specified
total cost.

Each of these examples has certain elements in common. Each may
be regarded as a special case of the following general formulation. There
is a set £ of available elementary experiments e. In each case the
distribution of the data of an experiment depends on the experiment and

on k unknown parameters represented by 6 = 91, *92., . e s ek).
We wish to estimate some function g( 61, 92, .« .. gk) of the para-

meters., A design consists of the independent performance of experiments
e, €. . . with possible repetitions. It is desired to find a design which

yields the best possible estimate of g( 9'1, 92, o s ey gk) for a speci-

fied total cost or for a specified number of observations.
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3. THE LINEAR REGRESSION MODEL. In 1952, Elfving [4] derived .
an elegant geometric solution to the optimal design problem for a special
but important case of the above general formulation. As we shall see
this result is applicable to a large variety of problems. Let E be a set
of experiments e denoted by (y,, yz). The experiment e consists of
observing

Z = Glyl + ezyz + u

where u is normally distributed with mean 0 and variance 1. Itis .
desired to obtain an optimal estimate of a, 61 + a, 92 using a design

consisting of n observations. The first example of estimating the slope
of a straight line is a special case of Elfving's linear regression model
where £ is the set of points (1, y) with -1€ y41, and (al,az) = (0, 1).

Elfving's solution consists of constructing a set S which is the
smallest convex set containing the points (yl, yz) of E and their nega-

tives (-yl, -yZ). Then extend the vector from (0, 0) to (al,az) until it

penetrates the set S. The point of penetration (wl,wz) represents the ’ .
optimal design. If this point is one of the original points (y,, y;,) or

(-yl, -yz) the optimal design consists of repeating (yl, yz) n times.

Otherwise the point of penetration is on a line segment connecting points
corresponding to two of the original experiments (or their negatives).

Then the optimal design consists of repeating these two experiments in
proportions given by the distances from (wl, wz) to the two points. The

greater proportion corresponds to the experiment closer to (Wl’ iwz).
Finally the variance of the least squares estimate based on thie design is

2 2.4 - 2 2 2
Oé) = [n(wf + wz)] 1(af + a,) =al-/nwf=a§/nw2

This solution can be illustrated with example 1. Here S is the
square whose corners are (1,1) and (-1, -1) corresponding to y = 1 and
(1, -1) and (-1, 1) corresponding to y = -1. The line from (0,0) through
(al,az) = (0, 1) penetrates S at (0, 1) which is halfway between (1, 1)
and (-1,1). Thus the optimal design consists of repeating the experi=-
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ments corresponding to y =1 and y = -1 each half the time (as was
well known). Furthermore the variance of the estimate of B should be
1/n.

Elfving's result applies in the obvious fashion to experiments in-
volving k parameters. Here we need repeat at most k of the avail~
able experiments in certain proportions to obtain the optimal estimate.

4, RESULTS FOR THE MORE GENERAL PROBLEM., As mentioned
in the preceeding section the problem treated by Elfving is a special
case of the more general one formulated in section 2. For this more
general problem, related results have been obtained [1] . These results
concern designs which are asymptotically locally optimal. We shall
defer the interpretation of these adjectives until the discussion of
Example 2 in section 5,

It was shown that.asymptotically locally optimal designs depend on
the form of the matrix J(e) which is defined as Fisher's information
matrix divided by the cost of the experiment e. In other words if
experiment e has cost C(e) and yields data X with probability dis-
tribution f(x, @ , e), Fisher's information matrix is

e = ||n{ 288K 0. ¢ -9-log 1% 6. o |
| 5,

and the information per unit cost is

J(e) = I{e)/ C(e).

Clearly if the cost of experimentation is constant one need concern one-
self only with I(e). The relevance of Fisher's Information derives
from its well known additive properties and the fact that the maximum-
likelihood estimate based on the outcome of n independent repe-

titions of e, has an approx1mate1y normal distribution with mean O and
covariance matrix [nI(e)] for large n.
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‘When it is desired to estimate one function of the k parameters,
there are asymptotically locally optimal designs which involve at most
k of the experiments of £ in certain proportions., This result which
corresponds to one of Elfving's results, together with the use of Fisher's
Information, permits one to reduce the calculation of optimal designs to
the maximization of a function of a fixed number of variables.

In the linear regression problem of Elfving, the information matrix
for e = (yl, yz) is '

L=yl =u.

Since asymptotically optimal designs are determined by the information
per unit cost it follows that for any problem where J(e) can be put in
the above form, the solution is the same as Elfving's with a; replaced
by 98

The illustration of the next section will help clarify the meaning of
these results. In the meantime it may be remarked that if for each
experiment the distribution of the outcome depends on only one function
of the parameters, J(e) can be put in the above form and Elfving's

results are applicable. In particular they are applicable to both examples
2 and 3, .

5. ILLUSTRATION. We shall find it informative to illustrate the
method with example 2. Here the outcome of the experiment s is
success or failure where the probability of success is

- > 1 -tz/z _ 8- L
p(_s,p,ﬂ:fﬂ e at = 1 - §(*5~)
o

where @ is the normal cdf. In other words the role of the density
f{X,6, e) is played by
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X 1-X
f=p (1 -p)
where X =1 for success and 0 for failure.

log £ = X log p + (1-X) log(1 - P)

2 logf _ X-p
AT p(t -p) 8l

9 log f - X-p o -
8o p(t - p) 80

Since E{(X-p)z:} = p(1-p) ,

(EE_) p 8p
Xs) = 1s) = | pl1 15)']'1 e 8‘Vz
- - P - 8 .
R T
J(s) = ||vivj||
where -1/25

v,(8) = [p(l-p)] -5%=[2ﬂp(1-p)} -1/2..0' - exp [-(s-/‘ )zlzr 2]

and

-1/2 9%

vz(é) =[p1-p) gk =[2mp1-p M2 (0-p) 07 exp [~(e-p)P/20 2).

Next we plot the set of points [yl(s), yzc‘s)] in Figure 1. We add the

negatives of these points and construct S the smallest convex set contain-
ing them. We note that for s = M + to , yz(s)/yl‘(s) = t. We also note

the curve of [yl(s), y;z(s)] reaches its maximum and minimum at
s =M t koo where k =1.57. Finally, since we wish to estimate K - ko
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we draw the vector from (0, 0) through (1, Qk), i. e. the line through the |
origin with slope -k, and note where it penetrates the convex set S.

Clearly there are two cases.

Case 1. ]k]g_ko. Here the vector penetrates S at one of the original

[yl(s), -yz(s) points. In fact this point corresponds to s = K -k¢” and

hence the optimal design consists of using s = M -ko* for all obser~ *
vations,

Case 2. 'k‘)ko. Here the vector penéfrates S at the straight line .

section of the boundary., The optimal design consists of applying the
stress levels H -kOD’ and- K +koo’ in proportions ktk, to k-k,.

In cases 1 and 2 the formal application of the formula for the variance
of the maximum likelihood estimate of W -k¢* based on the optimal
design is given by

T 2 Y
2o P [1-Q W] e =

in case 1, and 2 .

k ‘
27T0'2@(k°) [I-Q(ko)] e k;z k% n~! =1.64 ¢?k?n-1

in case 2,

6. THE RELEVANCE OF OPTIMAL DESIGN. Now we shall find
the illustrative example helpful in interpreting the results of the theory
of optimal design of experiments and in understanding its relevance in

practical applications. For simplicity let.us confine our attention to - ;
case 2 at first.

First we note one very peculiar aspect of the optimal design. Since
it involves using stress levels -k 00 and W ;i_koo' , to apply it one
‘must know P and & . Butif one knew M and & , there would be no
need to experiment. While this seems to be ridiculous, a glance at
figure 1 indicates that if one used an approximation to - ikoc’ , one
~would have a rather good approximation to the optimal design. Thus
there is surprisingly little loss of efficiency when one is not certain
about® and 0. It is this property that the word local is used to describe.
In other words our design would be efficient if we knew the parameters and
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is approximately efficient if we use an approximation to the unknown
parameters.

This raises the issue of the adjective asymptotic. If one had a large
sample available, one could use some of the initial observations to derive
an initial estimate of and on which to base an approximation to the
optimal design. Furthermore the qualification asymptotic derives from
a couple of other aspects. First, the properties relating the variance
of the approximate distribution of the maximum likelihood to the infor-
mation matrix and giving the efficiency of this estimate is based on
asymptotic theory assuming large sample size. A second and relatively
-minor point, is illustrated by example 1 if an odd number of observations
are available. The optimal design calls for putting half the observations
at +1 and half at -1. This is impossible in a trivial way when n is odd.
On the other hand the effect of this impossibility is negligible when n is
large.

Having seen how we must qualify the tern optimal by the adjectives
local and asymptotic, ‘we can now consider a more fundamental issue.
Briefly, our optimal design is simply impractical, Only in the rather
unrealistic context where I had absolute faith in the model would I con-
sider this as a solution. In fact, any reasonable statistician would insist
on using several other stress levels at least to check on the model, '

Another unreasonable aspect of our optimal-design arises from its
derivation based on the single minded purpose of obtaining a good esti-
mate of one function g(& P e NEERF ek) of the parameters. In many

practical probleme, experimentation is used to serve several purposes
simultaneously.

One may reasonably inquire about what function does the theory of
optimal design serve, if (1) the optimality must be qualified as locally
asymptotically optimal and (2) the designs it yields are unreasonable.
Basically the function® are the following. First, the theory provides a
yardstick for comparison purposes. If the designs proposed yesterday
by Mr. Langlie, or the Up and Down Method |3, p. 3191,, or some other
practical design turns out to be relatively efficient compared to our solu-
tion (as measured by asymptotic variance) then clearly there is no point
in attempting to improve on this aspect of these methods. If, on the other
hand, one of these methods were to have a low efficiency, then one is
forced to.delve deeper to see what, if anything, can be done to improve
the design. '
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Second, theory not only presents an optimal design but indicates
rather clearly how this design can be modified with relatively low loss
of efficiency. The theory serves to direct the attention of the practical
statistician toward designs which combine relatively high efficiency with

practical utility when robustness and multi-purpose considerations are
taken into account.

7. MISCELLANEOUS COMMENTS, I would like to conclude this
paper with a few assorted comments, First, the proposed solution to
example 2 in case 1 when Ikl £ k, consists of repeating one experiment
n times. Not only is this solution impractical, but from a theoretical
point of view it represents a degenerate situation. When a single level
s is used, one can use the data to estimate only

oo 2
pls, I\, 0) = L-u (217)-1/2e-t 12 g
g

or functions of p(s, X , ). Then one can check whether 5;“" is in

fact close to k (as it should be if the design were optimal). But not
knowing ¢f , one can not estimate H -ko’. Thus the formula for the

asymptotic variance presented at the end of section 5 is meaningful
only as an approximation to the case where several levels of stress

close to the optimal one were used. Alternatively one could regard

p(l--p)n"1 as the asymptotic variance of the estimate of p.

For a large sample sequential procedure, it seems clear that our
theory is applicable. If one were to reestimate the parameters after
each observation, and use these estimates to derive approximations to
the optimal design, the resulting procedure should be asymptotically
optimal in the sequential version:and the adjective local need not be
applied.

.

What is more interesting, perhaps, is the study of the "not so large'
sample sequential case. Here even the following seemingly simple
problem proposed by Harold Gumbel does not have a simple solution.
Suppose that experiment e; yields observation Xi which is normally-

distributed with unknown mean M# and unknown variance 0’12» i=1,2, and

it is desired to estimate M. In other words, two measuring instruments
of unknown accuracy are available, How should one select between the
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two experiments sequentially so as to obtain a good estimate efficiently
when the sample size is not necessarily very large?
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